Stability and Exact Multiplicity of Periodic Solutions of Duffing Equations with Cubic Nonlinearities
نویسندگان
چکیده
We study the stability and exact multiplicity of periodic solutions of the Duffing equation with cubic nonlinearities, x + cx + ax − x = h(t), (∗) where a and c > 0 are positive constants and h(t) is a positive T -periodic function. We obtain sharp bounds for h such that (∗) has exactly three ordered T -periodic solutions. Moreover, when h is within these bounds, one of the three solutions is negative, while the other two are positive. The middle solution is asymptotically stable, and the remaining two are unstable.
منابع مشابه
Exact Multiplicity for Periodic Solutions of Duffing type
In this paper, we study the following Duffing-type equation: x′′ + cx′ + g(t, x) = h(t), where g(t, x) is a 2π-periodic continuous function in t and concave-convex in x, and h(t) is a small continuous 2π-periodic function. The exact multiplicity and stability of periodic solutions are obtained.
متن کاملPower Series -Aftertreatment Technique for Nonlinear Cubic Duffing and Double-Well Duffing Oscillators
Modeling of large amplitude of structures such as slender, flexible cantilever beam and fluid-structure resting on nonlinear elastic foundations or subjected to stretching effects often lead to strongly nonlinear models of Duffing equations which are not amendable to exact analytical methods. In this work, explicit analytical solutions to the large amplitude nonlinear oscillation systems of cub...
متن کاملAnalytical Solutions of Undamped and Autonomous Cubic-Quintic Duffing Equation
In this paper, based on a combination of homogenous balance and the rational expansion method, the exact analytical and closed-form solutions of the Duffing equation with cubic and quintic nonlinearities are derived. We focus on heteroclinic and homoclinic solutions which are relevant for the prediction of chaos in forced mechanical systems. The conditions of existence of these solutions which ...
متن کاملPeriodic Solutions of the Duffing Harmonic Oscillator by He's Energy Balance Method
Duffing harmonic oscillator is a common model for nonlinear phenomena in science and engineering. This paper presents He´s Energy Balance Method (EBM) for solving nonlinear differential equations. Two strong nonlinear cases have been studied analytically. Analytical results of the EBM are compared with the solutions obtained by using He´s Frequency Amplitude Formulation (FAF) and numerical solu...
متن کاملSemilinear Elliptic Equations with Generalized Cubic Nonlinearities
A semilinear elliptic equation with generalized cubic nonlinearity is studied. Global bifurcation diagrams and the existence of multiple solutions are obtained and in certain cases, exact multiplicity is proved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007